RESPIRATORY PHYSIOLOGY

Guest Lecture to Biomed Dept.
Pratyusha Engineering College
by
Dr. R.V.S.N. Sarma., M.D., M.Sc., (Canada)
Consultant Physician & Chest Specialist
Mobile: 93805 21221 or 98940 60593
Visit our website: www.drsarma.in

Lecture map

Physiology of respiration
- Definitions and structures
- Mechanics of breathing
- Measurements of pulmonary function
- Cellular Respiration, Pulmonary disorders
- Blood gases - Diffusion
- Neural control of respiration
- Hemoglobin (and disorders)
- Transport of CO₂
- Acid/base balance

Anatomy of Respiratory Tree

Longitudinal Section

The Thorax and its contents

What is Respiration?
- Goals:
 - What is the respiratory system?
 - What is respiration?
 - What are the structural features?
 - What are their functions?
Respiration

- Ventilation:
 - Action of breathing with muscles and lungs
- Gas exchange:
 - Between air and capillaries in the lungs.
 - Between systemic capillaries and tissues of the body
- \(O_2\) utilization:
 - Cellular respiration in mitochondria

Functions of the Respiratory System

- Gas Exchange
 - \(O_2, CO_2\)
- Acid-base balance
 - \(CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^-\)
- Phonation
- Pulmonary defense
- Pulmonary metabolism and handling of bioactive materials

Inspiratory Movements

- Inspiration
 - Ribs flex out and up
 - Diaphragm pulls down
 - Lung moves with changes in intrathoracic pressure

Thoracic Cavity

- Diaphragm:
 - Sheets of striated muscle divides anterior body cavity into 2 parts.
- Above diaphragm: thoracic cavity:
 - Contains heart, large blood vessels, trachea, esophagus, thymus, and lungs.
- Below diaphragm: abdominopelvic cavity:
 - Contains liver, pancreas, GI tract, spleen, and genitourinary tract.

Mechanics of breathing

- Gas: the more volume, the less pressure (Boyle’s)
- **Inspiration:**
 - Lung volume increases \(\rightarrow\)
- Decrease in intrapulmonary pressure, just below atmospheric pressure \(\rightarrow\)
 - Air goes in!
- **Expiration:** viceversa
Intrapleural space:
- "Space" between visceral & parietal pleurae.
- Visceral and parietal pleurae (membranes) are flush against each other.
- Lungs normally remain in contact with the chest wall.
- Lungs expand and contract along with the thoracic cavity.

Mechanics of breathing

- **Compliance:**
 - This the ability of the lungs to stretch during inspiration
 - Lungs can stretch when under tension.

- **Elasticity:**
 - It is the ability of the lungs to recoil to their original collapsed shape during expiration
 - Elastin in the lungs helps recoil

Inspiration

- **Inspiration** – Active process
- Diaphragm contracts -> increased thoracic volume vertically.
- Intercostals contract, expanding rib cage -> increased thoracic volume laterally.
- More volume -> lowered pressure -> air in.
- Negative pressure breathing

Expiration

- **Expiration** – Passive
 - Due to recoil of elastic lungs.
 - Less volume -> pressure within alveoli is just above atmospheric pressure -> air leaves lungs.
 - Note: Residual volume of air is always left behind, so alveoli do not collapse.

Mechanics of breathing

- **During Quiet breath:**
 - +/- 3 mmHg intrapulmonary pressure.

- **During Forced breath:**
 - Extra muscles, including abdominals
 - +/- 20-30 mm Hg intrapulmonary pressure
Dynamics of Respiration

- Simple Mechanical Model
 \[P = \frac{V}{C} + RV + F \]

- P - pressure
- V - volume
- C - compliance
- R - resistance
- I - inertance

The Pressures

- Atmospheric pressure
- Intrapleural pressure
- Transalveolar pressure
- Partial pressure
- Alveolar pressure
- Intrapulmonary pressure
- Collapsing force of lungs

Respiration

- It is the process by which the body takes in oxygen and utilizes and removes CO\(_2\) from the tissues into the expired air.
- It comprises of:
 - Ventilation by the lungs
 - Gas exchange across alveolar membrane
 - Transport of gases by blood (haemoglobin)
 - Uptake of O\(_2\) and release of CO\(_2\) by tissues

Conducting Zone

- **Conducting zone:**
 - Includes all the structures that air passes through before reaching the respiratory zone.
 - Mouth, nose, pharynx, glottis, larynx, trachea, bronchi.

- **Conducting Airways**
 - Includes: From Trachea --> Terminal bronchioles
 - Warm and humidifies until inspired air becomes:
 - 37 degrees
 - Saturated with water vapor
 - Filters and cleans:
 - Mucus secreted to trap particles
 - Mucus/particles moved by cilia to be expectorated.
Respiratory Zone

- **Respiratory zone**
 - Region of gas exchange between air and blood
 - Respiratory bronchioles
 - Alveolar ducts, Alveolar Sacs and Alveoli

Respiratory Zone

- **Alveoli**
 - Air sacs
 - Honeycomb-like clusters
 - ~ 300 million.
 - Large surface area (60–80 m²).
 - Each alveolus: only 1 thin cell layer.
 - Total air barrier is 2 cells across (2 μm) (alveolar cell and capillary endothelial cell).

Respiratory Zone

- **Alveolar cells**
 - Alveolar type I: structural cells.
 - Alveolar type II: secrete surfactant.
Branching of Airways

- Dichotomous branching
- ~23 generations
- Can we describe this?
- Can we model this?

Respiratory Zone

Respiratory Zone: Respiratory bronchioles, Alveoli (300 million), Alveolar ducts, Alveolar sacs

Gas Exchange: respiratory membrane
Ventilation

- Mechanical process that moves air in and out of the lungs.
- Diffusion of...
- O_2: air to blood.
- CO_2: blood to air.
- Rapid:
 - large surface area
 - small diffusion distance.

Bronchial Section - microscopic

Higher magnification of Bronchus

Terminal Bronchioles - bifurcation

Alveoli under microscope

Alveoli - higher magnification
Alveoli

- 8 million alveolar ducts
- 300 million alveoli (diameter 70-300 μm)
- Total alveolar surface area ~ 70 m²
- Alveolar membrane thickness < 1 μm.

The large surface area of alveoli
Bronchoscopy

Blood Vessels of the Lung

- Pulmonary Artery:
 - Deoxygenated (venous) cardiac output.
- Pulmonary capillaries
 - extremely dense
 - underground parking garage
- Pulmonary Veins:
 - Oxygenated (arterial) cardiac output.

Alveolar capillary interface

Alveolar capillary interface - schematic

Surface tension

- **Surfactant**
 - produced by alveolar type II cells.
 - Interspersed among water molecules.
 - Lowers surface tension.
- RDS, respiratory distress syndrome, in preemies.
- First breath: big effort to inflate lungs!
Surface tension

Pulmonary Function

- **Spirometry**
 - Breathe into a closed system, with air, water, moveable bell

 ![Spirometry Diagram](www.drsarma.in)

Lung Volumes

- **Tidal volume (TV):** in/out with quiet breath (500 ml)
- **Total minute volume:** tidal x breaths/min
 - 500 x 12 = 6 L/min
- **Exercise:** even 200 L/min!
- **Anatomical dead space:**
 - Conducting zone
 - Dilutes tidal volume, by a constant amount.
 - Deeper breaths -> more fresh air to alveoli.

Lung Capacities

- **Vital capacity (VC):** the most you can actually ever expire, with forced inspiration and expiration.

 \[VC = IRV + TV + ERV \]

- **Total lung capacity:** VC plus residual volume

Lung Volumes

- **Inspiratory reserve volume (IRV):** extra (beyond TV) in with forced inspiration.
- **Expiratory reserve volume (ERV):** extra (beyond TV) out with forced expiration.
- **Residual volume:** always left in lungs, even with forced expiration.
 - Not measured with spirometer

Lung Volumes

- **Inspiratory reserve volume (IRV):** extra (beyond TV) in with forced inspiration.
- **Expiratory reserve volume (ERV):** extra (beyond TV) out with forced expiration.
- **Residual volume:** always left in lungs, even with forced expiration.
 - Not measured with spirometer
Pulmonary disorders

- **Restrictive disorder:**
 - Vital capacity is reduced.
 - Less air in lungs.

- **Obstructive disorder:**
 - Rate of expiration is reduced.
 - Lungs are “fine,” but bronchi are obstructed.

Disorders

- **Air/ Fluid in the pleural space**
 - Pneumothorax
 - Hydrothorax
 - Pyothorax
 - Hydropneumothorax

- **Restrictive disorder:**
 - Black lung from coal mines.
 - Pulmonary fibrosis: Tuberculosis
 - Too much connective tissue.

Pneumothorax – collapse lung

Obstructive Sleep Apnea

- Normal

Pulmonary Disorders

- COPD (chronic obstructive pulmonary disease):
- Smoking is the main cause for COPD
 - Asthma
 - Emphysema
 - Chronic bronchitis

Disorders

- **Asthma:**
 - Obstructive
 - Inflammation, mucus secretion, bronchial constriction.
 - Provoked by: allergic, exercise, cold and dry air
 - Anti-inflammatories, including inhaled epinephrine (specific for non-heart adrenergic receptors), anti-leukotrienes, anti-histamines.
Disorders

- Emphysema:
 - Alveolar tissue is destroyed.
 - Chronic progressive condition
 - Cigarette smoking stimulates macrophages and WBC to secrete enzymes which digest proteins.
 - Or: genetic inability to stop trypsin (which digests proteins).

Blood Gases

- Barometers use mercury (Hg) as convenience to measure total atmospheric pressure.
- Sea level: 760 mm Hg (torr)

Blood Gases

- Total pressure of a gas mixture is = to the sum of the independent, partial pressures of each gas (Dalton’s Law).
- In sea level atmosphere:
 - \(P_{STP} = 760 \text{ mm Hg} = P_{N_2} + P_{O_2} + P_{CO_2} + P_{H_2O} \)

Blood Gases

- Partial pressures: % of that gas x total pressure.
- In atmosphere:
 - \(O_2 \) is 21%, so \((0.21 \times 760) = 159 \text{ mm Hg} = P_{O_2} \)
 - Note: atmospheric \(P_{O_2} \) decreases on a mountain, increases as one dives into the ocean.

Blood Gases

- But inside you, the air is saturated with water vapor.
 - \(P_{H_2O} = 47 \text{ mm Hg} \) at 37 degrees
 - So, inside you, there is less \(P_{O_2} \):
 - \(P_{O_2} = 105 \text{ mm Hg} \) in alveoli.
 - In constrast, alveolar air is enriched in \(CO_2 \), as compared to inspired air.
 - \(P_{CO_2} = 40 \text{ mm Hg} \) in alveoli.

Blood Gases

<table>
<thead>
<tr>
<th>Gas</th>
<th>Partial Pressure (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_2O)</td>
<td>Variable</td>
</tr>
<tr>
<td>(CO_2)</td>
<td>60.3 mmtlg</td>
</tr>
<tr>
<td>(O_2)</td>
<td>159 mmtlg</td>
</tr>
<tr>
<td>(N_2)</td>
<td>601 mmtlg</td>
</tr>
<tr>
<td>Total Pressure</td>
<td>760 mmtlg</td>
</tr>
</tbody>
</table>

Inspiried air Alveolar air
Blood Gases

- Gas and fluid in contact:
- Gas dissolved in a fluid depends directly on its partial pressure in the gas mixture.
- With a set solubility, non-changing temp.
- (Henry’s law)
- So...
- P_{O_2} in alveolar air $\sim = P_{O_2}$ in blood.

Blood Gases

- O$_2$ electrodes can measure dissolved O$_2$ in a fluid. (also CO$_2$ electrodes)
- Good index of lung function.
- Arterial P_{O_2} is only slightly below alveolar P_{O_2}
- Arterial P_{O_2} = 100 mm Hg
- Alveolar P_{O_2} = 105 mm Hg
- P_{O_2} in the systemic veins is about 40 mm Hg.

Lung Perfusion and Ventilation

Ventilation – Perfusion Matching

System Overview
Perfusion
- Geometry of vascular tree
 - \(R = \frac{\eta}{r^4} \)
- Passive factors affecting PVR
 - PA pressure
 - LA pressure
 - effect of lung volume on PVR
- Local factors regulating Q and matching V/Q
 - HPV
 - pH/pCO2

Capillary Sheet
- Capillaries appear in septal walls between alveoli
- Coverage is approx. 90% of alveolar surface area
- Effective coverage is less allowing for recruitment

Capillary Recruitment
- We don’t perfuse all capillaries all the time
- Increased CO (e.g., exercise)
 - Spatially increased in Hb/P
 - Recruit unperfused capillaries
 - Dilate all capillaries

Tissue Respiration
- Oxygen release and CO\(_2\) pick up at the tissue level.
Cellular Respiration

Blood gases
- Most O_2 is in hemoglobin
 - 0.3 ml dissolved in plasma +
 - 19.7 ml in hemoglobin
 - 20 ml O_2 in 100 ml blood!
- But: O_2 in hemoglobin \rightarrow dissolved \rightarrow tissues.
- Breathing pure O_2 increases only the dissolved portion.
 - insignificant effect on total O_2
 - increased O_2 delivery to tissues

Pulmonary Circulation
- Left ventricle pumps to entire body,
- Right ventricle only to lungs.
- Both ventricles pump 5.5 L/min!
- Pulmonary circulation: various adaptations.
 - Low pressure, low resistance.
 - Prevents pulmonary edema.
 - Pulmonary arteries dilate if P_{O_2} is low (opposite of systemic)

Neural control
- I neurons = inspiration
- E neurons = expiration
- I neurons \rightarrow spinal motor neurons \rightarrow respiratory muscles.
- E neurons inhibit I neurons.

Neural control
- Also
 - voluntary breathing controlled by the cerebral cortex.
Chemoreceptors

- Oxygen: large “reservoir” attached to hemoglobin.
- So chemoreceptors are more sensitive to changes in P_{CO_2} (as sensed through changes in pH).
- Ventilation is adjusted to maintain arterial PCO_2 of 40 mm Hg.
- Chemoreceptors are located throughout the body (in brain and arteries).

Chemoreceptors (CTZ)

Hemoglobin

- Each hemoglobin has 4 polypeptide chains (2 alpha, 2 beta) and 4 hemes (colored pigments).
- In the center of each heme group is 1 atom of iron that can combine with 1 molecule O_2.
- (so there are four O_2 molecules per hemoglobin molecule.)
- 280 million hemoglobin molecules per RBC!

Hemoglobin

- **Oxyhemoglobin:**
 - Ferrous iron (Fe^{2+}) plus O_2.

- **Deoxyhemoglobin:**
 - Still ferrous iron (reduced).
 - No O_2.

Hemoglobin

- **Carboxyhemoglobin:**
 - Carbon monoxide (CO) binds to heme instead of O_2
 - Smokers
Hemoglobin

Loading:
- Load O_2 into the RBC.
- Deoxyhemoglobin plus O_2 -> Oxyhemoglobin.

Unloading:
- Unload O_2 into the tissues.
- Oxyhemoglobin -> deoxyhemoglobin plus O_2.

Loading/unloading depends on:
- P_02
- Affinity between hemoglobin and O_2
 - pH
 - Temperature

Dissociation curve: % oxyhemoglobin saturation at different values of P_0.
- Describes effect of P_0 on loading/unloading.
 - Sigmoidal
 - At low P_0, small changes produce large differences in % saturation and unloading.
 - Exercise: P_0 drops, much more unloading from veins.
 - At high P_0, slow to change.

Arteries: 97% saturated (i.e. oxyhemoglobin)
Veins: 75% saturated.
Arteries: 20 ml O_2/100 ml blood.
Veins: ~5 ml less
Only 22% was unloaded!
Reservoir of oxygen in case:
- don’t breathe for ~5 min
- exercise (can unload up to 80%)
Hemoglobin

- Fetal hemoglobin (F):
- Gamma chains (instead of beta)
- More affinity than adult (A) hemoglobin

Hemoglobin

- Anemia:
 - Hemoglobin below normal.
- Polycythemia
 - Hemoglobin above normal.
 - Altitude adjustment.

Disorders

- Sickle-cell anemia:
 - fragile, inflexible RBC
 - inherited change: one base pair in DNA -> one aa in beta chains
 - hemoglobin S
 - protects vs. malaria; african-americans
- Thalassemia:
 - defects in hemoglobin
 - type of anemia

RBC

- RBC
 - no nucleus
 - no mitochondria
 - Cannot use the O₂ they carry!!!
 - Respire glucose, anaerobically.

C₀₂ Transport

- C₀₂ transported in the blood:
 - most as bicarbonate ion (HCO₃⁻)
 - dissolved C₀₂
 - C₀₂ attached to hemoglobin (Carbaminohemoglobin)

C₀₂ Transport

Carbonic anhydrase in RBC promotes useful changes in blood P₀₂:

\[
\begin{align*}
\text{CA} & : & H₂O + C₀₂ & \rightarrow & H₂C₀₃ & \rightarrow & HCO₃⁻ & \text{ high P₀₂} \\
\text{CA} & : & H₂O + C₀₂ & < & H₂C₀₃ & < & HCO₃⁻ & \text{ low P₀₂}
\end{align*}
\]
C0₂ Transport

- Chloride shift:
 - Chloride ions help maintain electroneutrality.
 - HCO₃⁻ from RBC diffuses out into plasma.
 - RBC becomes more +.
 - Cl⁻ attracted in (Cl⁻ shift).
 - H⁺ released buffered by combining with deoxyhemoglobin.
 - Reverse in pulmonary capillaries

Acid-Base Balance

- Normal blood pH: 7.40 (7.35 - 7.45)
- **Alkalosis:** pH up
- **Acidosis:** pH down
 - H₂O + C0₂
 - Hypoventilation:
 - PCO₂ rises, pH falls (acidosis).
 - Hyperventilation:
 - PCO₂ falls, pH rises (alkalosis).

Acid-Base Balance

- Hyperventilation -> PCO₂ down -> pH of CSF up -> vasoconstriction -> dizziness.
- If hyperventilating, should you breath into paper bag? Yes! It increases PCO₂!
- Metabolic acidosis can trigger hyperventilation.
- Diarrhea -> acidosis.
- Vomit -> alkalosis.

Other Functions of the Respiratory System

- BEHAVIORAL - talking, laughing, singing, reading
- DEFENSE - humidification, particle expulsion (coughing, sneezing), particle trapping (clots), immunoglobulins from tonsils and adenoids, α-1 antitrypsin, lysozyme, interferon, complement system
- SECRETIONS - mucus (goblet cells, mucus glands)

Other Functions: cont

- METABOLIC - forms angiotensin II, prostacyclin, bradykinin, serotonin and histamine
- ACID - BASE BALANCE - changes in ventilation e.g., acute acidosis of exercise
- MISCELLANEOUS - lose heat and water, liquid reservoir for blood, force generation for lifting, vomiting, defaecation and childbirth

Best of Luck to all of you !!!

- CD of my lectures is made available
- Contact us for any clarifications or needs
- Dr R.V.S.N.Sarma., M.D., M.Sc., (Canada)
- Web site: www.drsarma.in
- E-mail: sarma.rvsn@gamil.com
- Mobile: 93605 21221 or 98949 60593